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Fig. 1. Random-phase Gaussian Wave Splatting (GWS-RP) takes Gaussian-based scene representations (top left) as input and converts them into holograms
(bottom left). Prior Gaussian-based CGH algorithms are unable to accurately reconstruct natural defocus blur due to the smooth-phase nature of the
synthesized holograms, resulting in limited blur variation across depths and severe ringing artifacts (top right). Our GWS-RP algorithm, on the other hand,
maximally utilizes the bandwidth of the spatial light modulator and reconstructs accurate parallax and defocus blur across the eyebox, as seen in the simulated

focal stacks of the GWS-RP holograms on the bottom right.

Holographic near-eye displays offer ultra-compact form factors for virtual
and augmented reality systems, but rely on advanced computer-generated
holography (CGH) algorithms to convert 3D scenes into interference pat-
terns that can be displayed on spatial light modulators (SLMs). Gaussian
Wave Splatting (GWS) has recently emerged as a powerful CGH paradigm
that allows for the conversion of Gaussians—a state-of-the-art neural 3D
representation—into holograms. However, GWS assumes smooth-phase
distributions over the Gaussian primitives, limiting their ability to model
view-dependent effects and reconstruct accurate defocus blur, and severely
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under-utilizing the space-bandwidth product of the SLM. In this work, we
propose random-phase GWS (GWS-RP) to improve bandwidth utilization,
which has the effect of increasing eyebox size, reconstructing accurate defo-
cus blur and parallax, and supporting time-multiplexed rendering to suppress
speckle artifacts. At the core of GWS-RP are (1) a fundamentally new wave-
front compositing procedure and (2) an alpha-blending scheme specifically
designed for random-phase Gaussian primitives, ensuring physically correct
color reconstruction and robust occlusion handling. Additionally, we present
the first formally derived algorithm for applying random phase to Gaussian
primitives, grounded in rigorous statistical optics analysis and validated
through practical near-eye display applications. Through extensive simula-
tions and experimental validations, we demonstrate that these advancements,
collectively with time-multiplexing, uniquely enables full-bandwith light
field CGH that supports accurate accurate parallax and defocus, yielding
state-of-the-art image quality and perceptually faithful 3D holograms for
next-generation near-eye displays.
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1 Introduction

Holographic near-eye displays offer eyeglasses-like device form
factors with unprecedented compactness for virtual and augmented
reality display systems [Gopakumar et al. 2024; Jang et al. 2024; Kim
et al. 2022a; Maimone et al. 2017]. Holographic displays, however, re-
quire advanced computer-generated holography (CGH) algorithms
to convert a target image or 3D scene into the interference pattern
that must be displayed on a spatial light modulator (SLM) [Mat-
sushima 2020; Pi et al. 2022]. Gaussian Wave Splatting (GWS) is an
emerging CGH paradigm that unlocks neural rendering [Tewari
et al. 2020, 2022] for holographic displays with photorealistic con-
tent [Choi et al. 2025]. For this purpose, a few unstructured pho-
tographs are distilled into a set of Gaussian primitives [Huang et al.
2024; Kerbl et al. 2023], which are efficiently converted to a hologram
using a wave-based CGH algorithm [Choi et al. 2025].

The recently introduced GWS algorithm makes the assumption
that the phase distribution over the surfaces of the Gaussian primi-
tives is near constant or smooth. This smooth-phase assumption is
common in the CGH literature as it typically leads to high image
quality (e.g., [Maimone et al. 2017; Shi et al. 2021]), but it is well
known that natural reflectance properties of real objects can only
be achieved using random phase distributions in holography [Good-
man 2015; Matsushima 2020; St-Hilaire 1995]. The use of random
phase distributions in coherent optics is analogous to microfacet
models used in computer graphics [Pharr et al. 2023]; the geometric
structure of surfaces at the micro-scale is described by a specific
phase distribution in a hologram. Neglecting to model these phase
distributions results in an under-utilization of the inherent space—
bandwidth product, or étendue, of an SLM, resulting in a small
eyebox providing poor user experiences [Kim et al. 2024, 2022b] and
unnatural defocus effects and small parallax, among other artifacts.

Indeed, the discussion of smooth vs. random-phase holograms
has been prevalent throughout the history of CGH [Lohmann and
Paris 1967]. The use of non-smooth phase distributions has been
proposed by many works [Pi et al. 2022], including those using
polygon primitives [Matsushima 2020]. Typically, random-phase
distributions lead to an increased amount of objectionable speckle,
but this can be mitigated using time multiplexing [Choi et al. 2022]
or other approaches.

In this work, we propose an algorithm that converts off-the-shelf,
pre-optimized Gaussian splats to a set of time-multiplexed random-
phase holograms, which we call Random-phase Gaussian Wave
Splatting (GWS-RP). We introduce a novel wave compositing pro-
cedure and alpha blending algorithm that is specifically designed
for random-phase Gaussians for accurate color reconstruction and
robust occlusion handling. Additionally, we formally describe a way
of applying random phase to Gaussians that allows for arbitrary
control over the spatial and angular emission profiles of the result-
ing random-phase GWS hologram. For the first time, we provide
rigorous and extensive proofs grounded in statistical optics that
validate the mathematical correctness of the heuristic outlined in
the GWS supplemental materials. We demonstrate practical benefits
of our algorithmic approach in better bandwidth utilization of the
SLM, more natural defocus behavior of the produced holograms,
and an increased eyebox size that supports larger parallax, which

is preferred by users in practice [Kim et al. 2024] and required to
drive their accommodation [Kim et al. 2022b]. These advancements,
together with time-multiplexing, uniquely enables accurate light
field and focal stack reconstruction, speckle reduction, and offers
increased image quality and perceptual realism of the produced 3D
holograms.

Specifically, our contributions include:

e Design of an exact wave-splatting and alpha-blending algo-
rithm to composite Gaussian wavefronts that works exclu-
sively with random-phase Gaussians (Sec. 3.2).

o First statistical optics-grounded analysis of a principled frame-
work to apply random phase and time multiplexing to Gaus-
sians to flexibly control the energy distribution of the result-
ing complex hologram spectrum (Sec. 3.3).

e Demonstration of the benefits of Random-phase GWS in
image quality, natural defocus behavior, and large parallax
effects, among others in both simulation and experiments
(Sec. 4.2).

Source code and example datasets will be made public.

2 Related Work

Our work builds on a large body of research on CGH algorithms,
which we review below. For a more comprehensive overview of
holographic displays, we refer the reader to [Chang et al. 2020; Javidi
et al. 2021; Park 2017; Pi et al. 2022; Yaras et al. 2010].

CGH Algorithms. Holograms create a visible image or 3D scene
indirectly by displaying an interference pattern, i.e., the hologram,
on a 2D amplitude- or phase-only SLM. Methods that convert a tar-
get intensity distribution into a hologram are called CGH algorithms.
These algorithms have been developed to accommodate a wide va-
riety of input 3D representations, including point clouds [Chen and
Wilkinson 2009a; Lucente 1993], meshes [Ahrenberg et al. 2008;
Matsushima et al. 2003], wireframes [Blinder et al. 2021], light
fields [Choi et al. 2022; Kang et al. 2008; Padmanaban et al. 2019;
Park and Askari 2019; Zhang et al. 2019], image layers [Chen and
Chu 2015; Shi et al. 2022], and most recently, Gaussians [Choi et al.
2025]. Classic or deep-learning-based direct CGH methods typi-
cally involve several steps. First, the desired intensity distribution
is encoded into a 2D complex-valued wavefront, which typically
requires an assumption on the phase distribution of the wavefront.
Subsequently, this wavefront is numerically propagated to the SLM
plane using wave propagation models such as the angular spectrum
method [Goodman 2005; Pellat-Finet 1994]. The resulting complex-
valued field is then encoded into a phase- or amplitude-only pattern,
depending on the type of SLM used [Maimone et al. 2017; Qi et al.
2016; Tsang and Poon 2013]. In contrast, iterative CGH methods
make use of iterative optimization to achieve a better image quality,
albeit at the cost of increased runtime [Chakravarthula et al. 2019;
Fienup 1980; Gerchberg 1972; Peng et al. 2020; Zhang et al. 2017].

Primitive-based CGH Algorithms. Among the various CGH
algorithms described above, polygon-based CGH algorithms that
use meshes as the input 3D format are closely related to our ap-
proach [Askari et al. 2017; Chen and Wilkinson 2009b; Matsushima
2005a,b; Matsushima and Nakahara 2009; Matsushima et al. 2014;



Matsushima and Sonobe 2018]. These methods, in principle, sup-
port view-dependent effects such as parallax through the use of
random phase maps applied to the primitives. However, the wave-
front of polygon primitives varies with their geometry, requiring
substantial memory for look-up table approaches and suffers from
numerical stability issues. Furthermore, these methods struggle to
render highly detailed appearances unless an excessive number of
tiny triangles are used as pointed out in prior work [Choi et al.
2025]. Gaussian Wave Splatting [Choi et al. 2025], on the other
hand, has emerged as a new primitives-based CGH algorithm that
converts Gaussian-based scene representations [Huang et al. 2024;
Kerbl et al. 2023] to complex holograms, greatly outperforming
traditional polygon-based CGH in terms of image quality and com-
puting time due to the compact Gaussians representation compared
to meshes and the numerical stability of Gaussians. However, GWS
does not support view-dependent effects and natural defocus due to
its smooth-phase nature. Additionally, the alpha-blending and wave-
splatting procedure described in GWS does not naturally extend to
random-phase Gaussians.

In this work, we show that for random-phase Gaussian wave-
fronts, alpha blending is exact in expectation in the intensity domain,
in contrast to the amplitude domain for smooth-phase Gaussians.
We then draw inspiration from polygon-based CGH methods and
devise a novel wavefront composition and alpha blending technique
that specifically work with random-phase Gaussians (Sec. 3.2) for
accurate color reconstruction and occlusion handling. As such, our
algorithm generates holograms with high in-focus image quality
using fewer primitives by fully leveraging the compact Gaussian
representation while synthesizing accurate defocus blur and wide
parallax via random phase and time-multiplexing.

Phase Distributions of Holograms. Although phase is not
directly observable, the phase profile of a wavefront plays a crucial
role in determining the spatio-angular behavior of the observable
light field [Chakravarthula et al. 2022; Kim et al. 2022b; Schiffers
et al. 2023; St-Hilaire 1995]. For this reason, two popular heuristics
have been developed that are widely used in CGH literature: smooth-
phase and random-phase holograms [Maimone et al. 2017; Yoo et al.
2021]. Smooth-phase, sometimes called random-phase-free, holo-
grams [Shimobaba and Ito 2015] achieve high image quality that can
be demonstrated with relatively simple experimental setups [Choi
et al. 2025; Maimone et al. 2017; Peng et al. 2020; Shi et al. 2021]. The
main drawback of smooth-phase distributions, however, is that they
concentrate energy in the low frequencies of the angular spectrum,
resulting in a severely restricted eye box size, limited defocus ef-
fects, and increased sensitivity to pupil position. These effects limit
the perceptual realism and overall user experience of the produced
holograms [Kim et al. 2024] as well as the support for perceptually
important focus cues [Kim et al. 2022b].

On the other hand, random-phase holograms are capable of recon-
structing larger parallax and natural defocus blur, which is necessary
for a perceptually-realistic and natural viewing experience [Kim
et al. 2024]. However, prior random-phase CGH algorithms can
only mimic the behavior of Lambertian, i.e. fully diffuse, object re-
flectance [Amako et al. 1995; Lohmann and Paris 1967; Matsushima
2020] and are unable to achieve arbitrary angular emission profiles.
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Furthermore, rapid phase variations between adjacent pixels intro-
duce unwanted speckle noise created by constructive and destruc-
tive interference [Goodman 2007]. Speckle reduction techniques
often utilize some form of partial coherence, introduced by partially
coherent or multiple coherent light sources, or by time multiplex-
ing [Chao et al. 2024; Choi et al. 2022; Curtis et al. 2021; Kuo et al.
2023; Lee et al. 2020; Peng et al. 2021].

In this work, we formally introduce a principled way of con-
trolling the phase randomness of individual Gaussian primitive
wavefronts by convolving the spectrum of the wavefronts with a
random spectral kernel (Sec. 3.3), a procedure first introduced as
a experimental heuristic sketch in the supplemental materials of
Gaussian Wave Splatting [Choi et al. 2025]. This differs from prior
work, where random phase is applied to wavefronts in the spatial
domain, which in turn can only model fully diffuse reflectance prop-
erties. The introduction of random phase to GWS greatly improves
its defocus blur quality and supports view-dependent effects. Addi-
tionally, we can assign arbitrary Fourier amplitude distributions, or
angular emission profiles, to the synthesized holograms, introduc-
ing benefits such as direct control over depth of field. Finally, we
for the first time prove that this algorithm is exact using rigorous
statistical optics analysis, providing the mathematical foundation
for the re-emerging field of primitives-based CGH.

3 Gaussian-based Computer-generated Holography

Our approach takes as input a set of multi-view images that are
turned into 2D Gaussians representing a 3D scene. These Gaussians
are then converted to a hologram that can optionally be time mul-
tiplexed. We briefly review the relevant background on Gaussian-
based scene representations and existing work on smooth-phase
Gaussian wave splatting, before introducing our random-phase CGH
algorithm, which uniquely enables a time-multiplexed image for-
mation. Moreover, we derive bounds on the achieved bandwidth
utilization and defocus behavior to formalize the benefits of our
approach.

3.1 Background

3.1.1 Gaussian-based Scene Representations. 2D Gaussians have
been established as a common scene representation as they can be
distilled from a few unstructured photographs or renderings of a
scene [Huang et al. 2024]. Each of these i = 1... N Gaussians is
described by its mean y; € R3, 3D covariance 3; = RiSiSl.TRl.T e R33
that can be factorized into a rotation matrix R; € R3*3 and a scaling
matrix S; € R3%3, opacity o; € R, and color ¢; € R (for a single color
channel).

Any Gaussian splatting approach requires the N Gaussians rep-
resenting a scene to be depth sorted from front to back based on
the z value with respect to the camera position, or in a holographic
display setup, the SLM plane. We closely follow the holographics
pipeline described in GWS [Choi et al. 2025] that transforms these
primitives into an adequate hologram space for CGH calculation.

3.1.2  Gaussian Wave Splatting. Gaussian Wave Splatting (GWS)
[Choi et al. 2025] is a CGH method capable of computing holograms
that accurately represent 3D scenes from collections of 2D Gaus-
sians [Huang et al. 2024] extracted from any off-the-shelf optimized
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2DGS models, e.g., models optimized using the gsplat library [Ye
et al. 2024]. GWS first analytically determines the spectrum of each
Gaussian described by its mean p; and 3D covariance X; and com-
putes the wavefront u;(x) = ai(x)ei*?i | where z; = (pi)z is the
Gaussian object depth and k = 27” Then, each wavefront u;(x)
is propagated using the angular spectrum propagation operator
P(-;z) [Goodman 2005; Matsushima and Shimobaba 2009] and al-
pha blended from front to back using the opacity o; and color c;
associated with each Gaussian to get the final composited wavefront
profile at the SLM, given by Egs. 1 and 2. We refer to this process as
alpha wave blending:

N
usn(0) = ) P(eiorlus (1T (0 ¥ -z). ()
i-1
7 () = [ (1= 0jlu;x))). ®)
j=1

GWS inherits the ability of Gaussian splatting to seamlessly merge
large numbers of Gaussians for high-quality reconstruction. GWS
further collapses to the original ray-based alpha blending [Huang
et al. 2024; Kerbl et al. 2023] and volume rendering [Kajiya and
Von Herzen 1984] if we ignore the wave propagation operator and
match the phase of all wavefronts at all depths (i.e., Zu; = kz;) such
that the composited wavefront at the SLM plane achieves a smooth
or near-constant phase profile. Therefore, this formulation of GWS
inherently generates “smooth-phase” holograms. Although GWS
has demonstrated the potential to recreate sharp details with photo-
realistic image quality [Choi et al. 2025], prior works in holography
[Choi et al. 2022; Kim et al. 2022b; Lee et al. 2022; Schiffers et al. 2023;
Shi et al. 2024] have pointed out that smooth-phase holograms are
undesirable due to their poor SLM bandwith utilization, unnatural
defocus blur, large depth of field (i.e., small blur variation across
different depths), and floater artifacts. In the following sections we
refer to GWS as smooth-phase GWS, or GWS-SP.

3.2 Random-phase Gaussian Wave Splatting

To maximize SLM bandwidth utilization, we propose Random-phase
Gaussian Wave Splatting (GWS-RP) where each Gaussian wavefront
is effectively modulated by a random phase map ¢;(x) to scatter
the light passing through each Gaussian in the scene away from the
optical axis. Gaussians are then alpha blended and composited from
back to front with respect to the SLM, and multiple such wavefronts
with individually sampled random phases are time multiplexed to
achieve the desired intensity distribution. The novel alpha blending
and wave compositing procedure in GWS-RP is specifically designed
to work with random-phase Gaussians with non-binary alpha values,
and greatly outperforms prior alpha blending schemes for complex
wavefronts [Choi et al. 2025; Yanagiya and Matsushima 2019] as we
demonstrate in Section 4.2.

In Eq. 3, let g;(x) denote the back-to-front composited wavefront
starting from the N th primitive up to the ith primitive and M;(x)
be the transmittance mask of the i/ primitive. The wavefront at
the i — 1" parallel plane where the next primitive is located, which
is a propagation distance Az = z;_1 — z; away, is given by:

(oD
g (x) = P(Mi (%) gi(x) + Veivoilui (x)| €441 )+9; (x);AZ),
©)

Mi(x) = V(1 - o0j|ui(x)]),
4
where t,1 < t < T is the index of the time-multiplexed frame, T
is the total number of multiplexed frames, and (]51.“) is the sampled
random phase for the ith Gaussian at the ! frame. The final com-
posited wavefront at the SLM plane that is located at zp = 0 is simply
defined by uéﬁw (x) = g(()t) (x).

Note that for GWS-RP, we use Gaussian splats optimized to re-
construct the square (i.e., intensity) of the target scene, instead of
the amplitude like in GWS-SP, hence the square root of the color
in Eq. 3. This is because alpha blending is exact in the intensity
domain for random-phase wavefronts, instead of in the amplitude
domain for smooth-phase wavefronts. Please refer to the supplemen-
tal materials for a formal mathematical analysis of why this subtle
distinction significantly affects the color of the rendered image and
the accuracy of occlusion handling.

The intensity of reconstructed images of the time-multiplexed

hologram flexibly described by the operator O(:; -) can therefore be
described by:

1y (1) 2
- T SLM\A )|
0= )o (u (x); )( )
t=1

where the operator O(-; ) could describe a single propagation that
reconstructs a 2D image, multiple propagations that reconstructs
a 3D focal stack, or the Short-time Fourier Transform (STFT) that
reconstructs a 4D light field [Choi et al. 2022].

The approach of multiplying the wavefronts of individual primi-
tives directly by random phase maps ¢i(t) (Eq. 3) is widely used in
prior works. Albeit straightforward, this is a heuristic and does not
allow for flexible control over the Fourier amplitude distribution of
the final synthesized hologram. Instead, we leverage an exact, prin-
cipled formulation of applying random phase to Gaussians, which
we call structured random phase, and describe in detail in Section
3.3.

With this random phase modulation, the bandwidth of the SLM
can be maximally utilized to achieve several benefits including large
eyebox and parallax, shallow depth of field (i.e., large blur variation
across different depths), natural defocus blur, as we will illustrate in
the following sections.

3.2.1 Bandwidth Utilization. Consider the wavefront of a single
Gaussian u(x) = a(x)ei¢(x), x € R?. For smooth-phase Gaussians,
we assume that ¢(x) = const. For random-phase Gaussians, we as-
sume that ¢’ (x) iid U (-, rr) over all spatial locations i. To formally
quantify the bandwidth characteristics of u(x), we can analyze the
power spectral density, or the intensity of the Fourier transform of
the wavefront @(k), k € R?, represented by |i(k)|? = a(k)a* (k).
For Gaussians with constant phase, we can show from theorems in
statistical optics [Goodman 2015] that the power spectral density is
a delta function with a small spatial support |&i(k)|? « 5(k), leading
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Fig. 2. Spectral analysis of smooth-phase and random-phase GWS
holograms. We show the log spectrum and the phase of the complex-
valued smooth-phase and random-phase GWS holograms. Smooth-phase
GWS diffracts light into small angles, leading to a smooth phase profile and
highly concentrated spectrum. Random-phase GWS, on the other hand,
diffracts light into a much wider cone of angles, resulting in a random phase
profile and a flat spectrum with energy evenly distributed across the eyebox,
as shown in the cross section figure. Random-phase GWS therefore naturally
supports larger and accurate parallax across the eyebox and high-quality
defocus blur if paired with time multiplexing.

to a small eyebox, while for random-phase Gaussians the expected
value of the power spectral density is flat with a large spatial support
E [|ﬁ(k)|2] = const. € R, leading to a large eyebox. This result is
demonstrated with simulated experiments in Fig. 2.

This power spectral density analysis suggests that (time-multi-
plexed) random-phase holograms maximally utilize the SLM band-
width while constant or smooth-phase holograms severely under-
utilize it. Random-phase holograms generated using GWS-RP can
therefore naturally support a large eyebox and parallax, shallow
depth of field, and natural defocus blur, as we show in the next
section.

3.2.2 Defocus Blur. Random-phase holograms naturally support
shallow depths of field due to the larger spatial spread across depths
compared to smooth-phase holograms. This allows the hologram to
create larger blur variations across different depths, which provides
a depth cue crucial to human vision. We illustrate this phenomenon
with the wavefront of a single Gaussian propagating to different
depths shown in Fig. 3. With additional time-multiplexing to reduce
speckles, the defocus blur of random phase holograms at different
depths closely emulates incoherent defocus blur.

To formally quantify the spatial spread of a wavefront u(x) prop-
agated to a specific depth z € R, we can analyze the variance of the
intensity of the propagated field P (u(x), z):

2 2 2
= , dx.
o°(2) //Rz %7 [# (u(x), 2)|” dx (6)

Since variance by definition quantifies how spread out a distribu-
tion is, the variance of the intensity of the propagated wavefront
naturally characterizes the spatial spread of the wavefront.
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Fig. 3. Depth of field comparisons of smooth-phase and random-
phase Gaussians. We simulate the propagation of a single Gaussian primi-
tive with different phase profiles to various distances and show the resulting
amplitude after propagation. For smooth- or constant-phase Gaussians,
their amplitude profile does not change after propagation since light is
traveling in approximately the same direction, resulting in a large depth
of field. The amplitude profiles of random-phase Gaussians spread out as
they propagate, leading to larger blur and shallower depth of field. With
additional time multiplexing, the speckles in the propagated field are greatly
reduced and can thus be used to correctly synthesize incoherent blur to
support natural accommodation cues.

Eq. 6 can be further rewritten as:

az(z)z//Rz x2|u(x)|2dx+(£)2-//R2 P a0 Fdk, (7)

where the first term is the variance of the initial intensity field (which
are the same for smooth-phase and random-phase wavefronts that
have the same amplitude) and the second term includes the variance
of the power spectral density (defined in 3.2.1) that quantifies the
angular spread. Note that the second term increases quadratically as
propagation distance z increases. Please refer to the supplemental
material for a detailed derivation of Eq. 7.

Since the variance of the power spectral density of a random phase
wavefront is much larger than that of a smooth-phase wavefront,
random-phase holograms exhibit much larger spatial spread across
depths. This property allows random-phase holograms to accurately
create different levels of defocus blur, which is a crucial depth cue
for human vision.

3.3 Structured Random Phase with Partial Coherence

Prior works have pointed out that a single coherent wavefront can
only represent light fields with rank-1 mutual intensity [Choi et al.
2022; Hamann et al. 2018; Zhang 2011]. Due to this constraint, a
single coherent wavefront modulated by a band-limited SLM cannot
simultaneously achieve both the desired spatial and angular ampli-
tude distributions. However, it has been demonstrated that through
partial coherence in the form of time multiplexing, high-quality
light-field holograms of higher ranks can be reconstructed [Choi
et al. 2022; Kim et al. 2024]. Inspired by these works, we discuss
a principled way of applying random phase to Gaussians that al-
lows for arbitrary control over the spatial and angular emission
profiles of the resulting random-phase GWS hologram, which we
call structured random phase with partial coherence. Specifically, we
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Fig. 4. Programmatically controlling depth of field of GWS-RP holograms using structured random phase. By setting different r values in the pupil
function P(k, r), we can programmatically control the depth of field of the synthesized GWS-RP holograms. With smaller r, the pupil is smaller and filters out
high frequency components in the hologram spectrum, resulting in small blur and large depth of field. With large r, the hologram exhibits shallow depth of

field and large blur.

Algorithm Previous Ours & Choi et al. [2025]

Modulated wavefront u(x) - ™ u(x) - FH{QO(k)e?®y
Spatial amplitude (TM) Ju(x)| |lu(x)|
Fourier amplitude constant. (k)

Table 1. Comparison of random phase modulation algorithms. Here,
we compare the spatial and Fourier amplitude of the random phase-
modulated wavefronts using different algorithms. Previous random-phase
modulation algorithims apply random-phase in the spatial domain, result-
ing in a constant Fourier amplitude that can only represent diffuse surfaces,
significantly limiting the angular expressivity of individual primitive wave-
fronts. Conversely, we convolve the spectrum of the Gaussian wavefront
with random phase kernels in structured random phase, which preserves the
amplitude distribution |u(x)| (expected value, or time-multiplexed (TM))
of the Gaussians in the spatial domain while achieving arbitrary Fourier
amplitude distributions or angular emission profiles Q(k) in the Fourier
domain.

convolve the angular spectrum of each Gaussian primitive with a

complex spectrum Q(k)e/ ¢ () and time multiplex multiple such
wavefronts 1 < t < T, to achieve the desired angular emission
profile Q(k) in the Fourier domain through partial coherence, as
described in Table 1.

The phase profile ¢ (k) of the angular emission kernel Q (k)e/ ¢k),
on the other hand, plays a crucial role in correctly reconstructing
the Gaussian amplitude in the spatial domain. We prove that this
can be achieved through sampling multiple phases for ¢ (k) from the
uniform distribution U (-, 7). Through time multiplexing multiple
such wavefronts, the expected value of the amplitude of the inverse
Fourier transform of Q(k)e/ ¢(®) is a constant in the spatial domain,
allowing us to assign arbitrary amplitude distributions Q(k) to the
angular emission kernel in the Fourier domain while retaining the
correct Gaussian amplitude profile of each Gaussian primitive in
the spatial domain. Although this algorithm was briefly mentioned

as a heuristic sketch in the supplemental materials of prior relevant
work Gaussian Wave Splatting [Choi et al. 2025], we for the first
time formally prove that this algorithm is exact based on rigorous
derivations grounded in statistical optics. Please refer to the sup-
plemental materials for the detailed mathematical derivations and
analysis regarding the structured random phase algorithm.

One example of the amplitude of the angular emission profile
includes the use of spherical harmonics Q(k) = Y,ln (k) to model
specular colors, where Y2, (k) is the is the spherical harmonics func-
tion Y;" of degree [ and order m evaluated at the normalized direc-

tion k = k/||k|| of the wave vector k. Another example of Q(k) is
Q(k) = 1, representing fully diffuse primitives where the angular
emission profile is uniform across all angles, or the circular binary
pupil function Q(k) = P(k,r):

1, if|k||<r

s
0, otherwise

Pkr) = { ®

where P(k, r) filters out higher frequency components in the Fourier
domain, which is useful for programmatically controlling the depth
of field of the reconstructed focal stack, which we demonstrate in
Fig. 4.

4 Experiments
4.1 Implementation Details

4.1.1 Datasets and 3D Scene Representations. We generate 3D holo-
grams of selected scenes from the synthetic Blender dataset [Milden-
hall et al. 2020] and the MipNeRF-360 dataset [Barron et al. 2022]
using different 3D scene representations, including 2D Gaussians
and textured meshes. We follow GWS [Choi et al. 2025] to prepare
our 3D scene representations. We use the open-source Gaussian
splatting software library gsplat [Ye et al. 2024] to optimize 2DGS
models. For textured meshes, we use the optimized textured mesh



models released by the NeRF2Mesh [Tang et al. 2023]. Please refer
to the supplemental materials for more data preparation details.

4.1.2  Algorithm Implementations. We implement GWS-RP and all
baseline methods in PyTorch. Please refer to the supplementary
materials for pseudocode and implementation details.

4.1.3  Experimental Setup. GWS-RP generates complex-valued holo-
grams. We perform SGD [Choi et al. 2022; Peng et al. 2020] with
a complex field supervision loss [Chen et al. 2021] to synthesize
phase-only holograms that accurately reconstruct the target com-
plex wavefront at a fixed propagation distance (4cm) from the phase-
only SLM. We use a 1080p HOLOEYE Pluto-2.1 phase-only SLM
with 8um pixel pitch and a FISBA READYBeam fiber-coupled laser
module as the illumination source. We use a FLIR GS3-U3-123S6C-C
color camera placed on a Thorlabs MTS25-Z8 25mm translation
stage to capture focal slices at different distances from the SLM.

We refer readers to the supplementary materials for more details
on phase-only optimization for complex valued GWS-RP holograms
and the experimental setup.

4.2 Simulation and Experimental Results

4.2.1 Baseline Comparisons with Simulation Results. We compare
GWS-RP with several primitive-based CGH baselines, including
random-phase polygon-based CGH (Polygons-RP) using the silhou-
ette method [Matsushima 2005b; Matsushima and Nakahara 2009;
Matsushima et al. 2003] and its time-multiplexed variants (1 frame,
8 frames, and 24 frames) as well as Gaussian Wave Splatting (GWYS)
[Choi et al. 2025].

Fig. 6 shows the simulated focal stack comparisons of the syn-
thesized complex holograms. Since GWS generates smooth-phase
holograms, there is little variation in blur size across depths and
the blur shape is unnatural with ringing artifacts (coherent blur),
leading to incorrect retinal blur cues for a human observer. Single-
frame random phase holograms (Polygon-RP and GWS-RP) suffer
from prominent speckle artifacts but image quality improves as time
multiplexing increases to 8 and 24 frames. Random-phase polygon-
based CGH generates much more natural blur, but the in-focus
image quality is inherently limited by the underlying low-quality
per-face textured mesh 3D scene representation. GWS-RP achieves
the most natural defocus blur that accurately emulates incoher-
ent blur while achieving similar image quality in in-focus regions
compared to GWS.

Fig. 7 shows the simulated light-field comparisons of the synthe-
sized complex holograms in terms of individual light-field views
and epipolar images. Since the energy of the wavefront is greatly
concentrated around the center of the eyebox for smooth-phase
GWS, light-field views at the periphery of the eyebox are severely
degraded. For GWS-RP, the energy of the wavefront is evenly spread
out across the eyebox, which results in accurate light-field view re-
construction at all pupil locations within the eyebox. The image
quality of random-phase polygon-based CGH is again limited by the
coarse per-face textured mesh 3D representation. We additionally
show quantitative comparisons of dense 10 x 10 light-field recon-
struction performance in terms of various standard image quality
metrics between different CGH methods in Table 2.
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CGH Algorithm Blender Mip-NeRF 360

Polygons-RP (1 frame) 17.02/0.14/0.75
20.27 /0.30 / 0.65
18.11/0.15/0.76
23.42/0.36 / 0.64

24.87/0.49/0.56

12.77 /0.14/0.76
15.63/0.27 / 0.69
14.17/0.17 / 0.76
19.65/0.36 / 0.65
21.21/0.48/0.58

Polygons-RP (8 frames)
GWS-RP (1 frame)
GWS-RP (8 frames)

(
(
GWS-RP (24 frames)
[

GWS-SP [Choi et al. 2025] 14.35/0.18 / 0.63 10.50 / 0.17 / 0.60

Table 2. Quantitative light-field reconstruction performance of dif-
ferent CGH algorithms. We evaluate the image quality of 10 X 10 dense
light fields reconstructed from the simulated holograms generated using
different CGH methods in terms of PSNR (T) / SSIM (T) / LPIPS (]). The
best performing metrics for all CGH baselines are boldfaced. Our method
achieves the best image light-field reconstruction performance and eyebox
uniformity among all CGH baselines.

4.2.2 Time-multiplexing Discussions. While time-multiplexing re-
duces the effective frame rate of our holographoc display, our frame-
work supports both single- and multi-frame modes, where we vali-
date our method up to 24 frames time-multiplexing. The multi-frame
results merely represent an upper bound, and ablations in Table 2
show exceptional performance even with fewer frames (single frame,
8 frames) compared to smooth-phase GWS and polygon-based CGH
baseline methods. GWS-RP can continue to benefit from the rapid
advanvements in next-generation SLM technologies, such as the
3600 fps FLCoS used in Holograhic Parallax [Kim et al. 2024] and re-
cent developements in the 5760 fps Texus Instruments MEMS-based
PLM.

4.2.3 Experimentally Captured Focal Stack Results. We experimen-
tally capture 3D focal stacks of GWS-RP and other CGH baselines
encoded using SGD [Peng et al. 2020] with complex wavefront su-
pervision to demonstrate real-world refocusing capabilities of the
synthesized phase-only holograms. Individial frames and color chan-
nels are captured independently and merged in post-processing.
The experimentally captured focal stacks match the simulation
results well, as shown in Fig. 8. GWS-RP achieves the best bal-
ance between high in-focus image quality and natural defocus blur.
Smooth-phase GWS achieves good in-focus image quality but suf-
fers from ringing coherent blur artifacts and limited blur size in
defocus regions. The in-focus image quality of polygon-based CGH
is inherently limited by the per-face colored mesh 3D representation.

4.24 Ablation Study on Alpha Blending Operations. Several meth-
ods have been proposed to address occlusion handling of translucent
primitives in CGH. We compare several of these methods in Fig. 5.
Yanagiya and Matsushima [2019] proposed an extended traditional
silhouette-based methods to handle primitives with non-binary
opacity values. However, this method was not specifically designed
for Gaussian splats, resulting in poor reconstruction quality for even
in-focus regions. GWS [Choi et al. 2025] extended alpha blending in
ray-based Gaussian splats rendering [Kerbl et al. 2023] to work with
coherent and smooth-phase Gaussian wavefronts, where they refer
to it as alpha wave blending. This yields somewhat plausible results
when applied to random-phase Gaussians. However, the resulting
focal stacks exhibit prominent dark halo artifacts at depth disconti-
nuities. In light field reconstruction, this manifests as dark borders
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Focal slice

Light field
view

GWS Alpha Wave Blending

Random-phase GWS (Ours) (b) Alpha Blending lllustration

V]
Random-phase Off-axis pupil @

GWS (Ours)

Q» On-axis pup||

Off-axis pupil X

QO:

GWS Alpha
Wave Blending

il

-
-
-

QO:

On-axis pupll

Fig. 5. Ablation study on different alpha-blending methods. We compare our method with two other algorithms that perform alpha blending on
wavefronts. The algorithm proposed by Yanagiya and Matsushima [2019] simply does not work with optimized Gaussian splats, resulting in incorrectly
reconstructed images. Alpha wave blending in GWS-SP [Choi et al. 2025] reconstructs plausible results, but suffers from dark halo and edge artifacts at depth
discontinuities and occlusion borders due to incorrect occlusion handling for random-phase Gaussians. From Fig. (b), we see that light rays in the dark region
cannot reach the off-axis pupils since light is assumed to be only traveling on-axis given the smooth-phase assumption and the way the transmittance maps
are calculated in GWS-SP. Our algorithm reconstructs the most accurate focusing and occlusion behavior.

around foreground occluders. These artifacts arise from blurred
alpha map edges across depth layers that lead to imprecise blending,
and from incorrect occlusion of off-axis diffracted light. GWS-SP
assumes purely on-axis light propagation from the smooth-phase
Gaussians and thus the transmittance maps are only considered
for the on-axis pupil, resulting in its occlusion model erroneously
blocking light for random-phase Gaussians where light travels at
steeper angles, as shown in Fig. 5 (b).

Our proposed alpha-blending formulation together with a back-
to-front compositing procedure, achieves the most accurate focal
stack reconstruction and parallax rendering results, completely elim-
inating artifacts at depth discontinuities and occlusion borders while
accurately reconstructing image content.

4.2.5 Comparisons with STFT-based Light Field CGH. Despite be-
longing to fundamentally different algorithmic classes, we delineate
the key distinctions between GWS-RP and STFT-based light field
CGH methods [Choi et al. 2022; Kim et al. 2024]. STFT-based CGH
methods require densely sampled per-view light field targets (there-
fore all prior STFT-based light field CGH typically use synthetic
datasets), per-view iterative optimization, and suffer from spatio-
angular tradeoffs and poor generalizability in intermediate views
due to the window function used in STFT. In contrast, our direct,
non-iterative method operates directly on pre-optimized, off-the-
shelf Gaussian splats, enabling arbitrary-view rendering without
re-optimization. While we do not claim superiority, GWS-RP ad-
dresses a fundamentally different CGH regime that is optimized for
real-world capture and forward compatibility with state-of-the-art
Gaussians-based 3D representations, benefiting from any ongoing
advances in Gaussian splatting.

5 Discussion

Limitations and Future Work. In GWS-RP, partial coherence in
the form of time multiplexing is used to reduce noise introduced by

random phase, yet many time-multiplexed frames are required to
reconstruct a noise-free focal stack. In practice, time-multiplexing
capabilities are limited by the speed of the SLM. Therefore, optimal
phase distributions that reduce the number of time-multiplexed
frames while providing noise-free images is an interesting future
direction. Dealing with quantization in fast SLMs would also be
an interesting future direction. Due to the use random phase, our
experimental results suffer from reduced contrast, but learning-
based model calibration techniques [Choi et al. 2022; Peng et al.
2020] can potentially be used to further improve the image quality.
Extending these models to directly reconstruct complex fields [Jang
et al. 2024] could be useful for our complex GWS-RP holograms.
Our implementation of the GWS-RP algorithm does not run in real
time. Although hologram synthesis using deep neural networks
have been an ongoing research topic [Peng et al. 2020; Shi et al.
2021], these designs are often restricted to synthesize smooth-phase
holograms. Designing neural networks that can directly synthesize
random-phase holograms would be immensely useful.

Conclusion. Random-phase Gaussian Wave Splatting synthesizes
photorealistic holograms from state-of-the-art Gaussian-based scene
representations and reconstructs accurate defocus blur and large
parallax, unlocking the full potential of next-generation holographic
displays for perceptually realistic and comfortable VR experiences.
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Fig. 6. Simulated 3D focal stacks reconstructed from various baseline CGH algorithms. The image quality of random-phase polygons-based CGH
(Polygons-RP) is inherently limited by the coarse per-face textured mesh representation, resulting in poor image quality even in in-focus regions. Smooth-phase
GWS (GWS-SP) [Choi et al. 2025] reconstructs sharp details at in-focus regions, but suffers from large depth of field and unnatural ringing artifacts. Our
method (GWS-RP) generates sharp content at focused regions and the resulting hologram has shallow depth of field, reconstructing natural defocus blur
across different depths. With additional time-multiplexing, the image quality of GWS-RP significantly improves.
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Fig. 7. Simulated light fields reconstructed from various baseline CGH algorithms. The spectrum of of smooth-phase GWS (GWS-SP) holograms
[Choi et al. 2025] is highly concentrated, resulting in a tiny eyebox. As the pupil moves to the edge of the eyebox, the light field views completely disappear, as
shown in the dark edges in the horizontal epipolar images. Conversely, energy is evenly distributed in the spectrum of random-phase holograms (Polygons-RP
and GWS-RP), thus accurate parallax can be reconstructed across the full eyebox.
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Fig. 8. Experimentally captured 3D focal stacks of holograms generated using different CGH algorithms. Polygon-based CGH (Polygons-RP)
[Matsushima 2005a; Matsushima and Nakahara 2009; Matsushima et al. 2014] achieve low image quality even in in-focus regions due to the low quality the
underlying textured mesh 3D representation. GWS-SP [Choi et al. 2025] generates smooth-phase holograms, resulting in limited defocus blur with unnatural
ringing artifacts which are most prominent in regions with thin structures such as the rope on the ship. Our method, GWS-RP, achieves good image quality in
in-focus regions and reconstructs natural incoherent blur in defocus regions. With 24 frames time-multiplexing, GWS-RP achieves near speckle-free results.
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